Technical and Economic Feasibility Assessment of Small Hydropower Development in the Deschutes River Basin

Qin Fen (Katherine) Zhang
Rocio Martinez
Bo Saulsbury
Kevin Stewart
Brennan Smith

Deschutes Basin Stakeholder Workshop
February 1, 2013
Introduction

- **Purpose:** identify and assess opportunities for new small hydropower development in Deschutes Basin, along with technology needed to develop selected sites and economic feasibility of developing sites.

- **Three likely scenarios for additional hydropower generation:**
 - add new generators at non-powered dams (NPDs) and diversion structures;
 - add new generators in existing irrigation canals and conduits; and
 - increase generation at existing hydropower facilities.

- **Focus:** developing new projects, so assessment includes only adding new generators at (1) NPDs and diversion structures and (2) existing irrigation canals and conduits.
Introduction

- Today: brief overview of assessment methodology and results for Deschutes Basin.

- In March: more detailed written report on assessment methodology and results for Deschutes Basin.

- After March: more detailed documentation on ORNL Hydropower Energy and Economic Assessment (HEEA) Tool, including availability for use in assessing other sites and basins in United States.
Recent Assessments: NPDs

- National Hydropower Asset Assessment Program (NHAAP) database lists 64 NPDs/diversions in Upper and Middle Deschutes and Crooked basins. Three have potential capacity > 3 MW: North Unit Diversion Dam (4.65 MW), Wickiup Dam (3.95 MW), and Bowman Dam (3.393 MW).

- Reclamation (2011) *Hydropower Resource Assessment at Existing Reclamation Facilities* also models Wickiup with potential capacity of 3.95 MW and Bowman with potential capacity of 3.29 MW.

- *Reclamation 2011* ranks hydropower sites at Reclamation dams in Pacific Northwest based on benefit/cost ratio (BCR) (with green incentives) > 0.75. Bowman ranks highest in Pacific Northwest with BCR of 1.90 and internal rate of return (IRR) of 11.2 percent.

- Two other Deschutes Basin dams had BCRs > 0.75 in *Reclamation 2011*: Wickiup (0.98) and Haystack Canal (0.85). Three others (Crane Prairie, Lytle Creek, and Ochoco), did not meet 0.75 BCR threshold.
Recent Assessments: NPDs

Two NPDs have moved past assessment stage:

- Symbiotics, LLC: FERC license application for Wickiup Dam Hydroelectric Project (installed capacity 7.15 MW and average annual energy production 21.15 GWh).

- Portland General Electric: FERC preliminary application document for Crooked River Hydroelectric Project at Bowman Dam (installed capacity 6.0 MW and average annual energy production 23.0 GWh).
Recent Assessments: Canals/Conduits

- Potential exemplified by SID’s Ponderosa Project, COID’s Juniper Ridge Project, and TSID’s Main Canal Project.

- Black Rock Consulting (2009) *Feasibility Study on Five Potential Hydroelectric Power Generation Locations in the North Unit Irrigation District*. Three sites deemed economically feasible (i.e., BCR > 1.0) with Energy Trust of Oregon (ETO) grants, investment tax credits, and low-cost equipment and construction.

Recent Assessments: Canals/Conduits

- COID and Oregon Department of Energy (ODE) (2011) *Feasibility Study for Six Central Oregon Irrigation District Potential Hydroelectric Power Generation Sites*. Two sites have estimated BCRs > 0.75.

- Reclamation (2012) *Site Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits* assesses 393 sites in 13 states and ranks by potential annual energy and potential installed capacity.

- *Reclamation 2012* includes 39 NUID sites along North Unit Main Canal; four of top 25 sites in all 13 states are NUID sites.
ORNL Assessment Methodology

- Used ORNL *Hydropower Energy and Economic Assessment (HEEA) Tool* (Version 1.0) being developed by Qin Fen (Katherine) Zhang and Rocio Martinez.

- Site-specific information (including available flow data) from recent NPD and canal/conduit assessments and from multiple data sources.

- Energy/economic assessment differentiates between economically feasible and infeasible sites. Ranks sites by BCR and IRR based on site-specific conditions and green incentives.

- Feasible = BCR ≥ 1.0 and IRR > 5.9% (Weighted Average Cost of Capital).

- Also investigated sensitivity of BCR and IRR to different turbine types from domestic and international suppliers.
ORNL HEEA Tool

- Can be incorporated into Deschutes Basin-Scale Water Management Model by:
 - collecting basic project and site information as input to Basin-Scale Model;
 - accepting flow and head data input from various flow scenarios simulated in Basin-Scale Model, and;
 - producing site-specific energy and economic assessment results as input to Basin-Scale Model

- Targeted application in Deschutes Basin is small hydro (100 kW to 10 MW), but can assess projects from 10 kW to 50 MW.
Methods for Design Flow & Turbine Type

- ORNL HEEA Tool automatically selects turbine type based on ranges of rated net head and design unit flow.

- Develops matrix of turbine types by referencing multiple sources (ESHA 2004; ASME-HPTC 1996; etc.).

- Matrix turbine flow ranges from 0.7 cfs to 2500 cfs, and head ranges from 6.6 ft to 3000 ft.
Turbine Type Selection Matrix

Flow (cfs)	0.7	10	15	20	30	40	50	80	90	100	150	200	250	300	400	500	600	700	800	1000	1200	1400	1600	1800	2000	2500	
Head (m)																											
0.02																											
0.03																											
0.04																											
0.05																											
0.06																											
0.07																											
0.08																											
0.09																											
0.10																											
0.11																											
0.12																											
0.13																											
0.14																											
0.15																											
0.16																											
0.17																											
0.18																											
0.19																											
0.20																											

Note: The table continues with more rows and columns, providing specific turbine types for different combinations of flow and head.
Method for Benefit/Economic Evaluation

Three revenue streams considered

- Energy value: monthly generation data used, so energy value seasonality is taken into account.

- Capacity value: reflects avoided cost by utilities of buying energy through a power purchase agreement rather than producing it.

- Green incentives:
 - Renewable Electricity Production Tax Credit (PTC) or Business Energy Investment Tax Credit (ITC) included.
 - Renewable energy credits (RECs) and REC sales not included (yet).
 - State and local grants not included (yet).
Results: NPDs

- Assessed 14 NPD sites with sufficient historical flow data.
- For Wickiup, Bowman, North Unit Diversion, Crescent Lake, and Crane Prairie, used daily flow data from USGS. For all other NPD sites, used estimated monthly flow data from NHAAP database.
- Used HEEA Tool default input data and assumed 2-year construction period for projects > 3 MW and 1-year period for smaller projects.
- Initial incentive funds, length of new pipeline, and length and voltage of new transmission line from previous assessments.
Results: NPDs

- Wickiup, Bowman, North Unit Diversion, and Ochoco (ranked by potential capacity) are economically feasible.

- Wickiup, Bowman, and North Unit Diversion have BCRs > 1.0 for almost all turbine types and manufacturers considered, even without green incentives.

- Total potential power capacity at all 14 NPDs about 17.8 MW, with 70.3 GWh annual energy generation.

- Total potential power capacity at four feasible projects about 17.0 MW, with 66.6 GWh annual energy generation.
Results: Canals/Conduits

- Assessed 17 canal/conduit sites with some historical flow data available.

- For 45-Mile Site, used flow data from application for FERC Exemption (EBD Hydro 2010). For other sites, used flow data from previous assessments (Black Rock 2009; ETO 2010; COID and ODE 2011).

- Used HEEA Tool default input data and assumed 1-year construction period.

- Initial incentive funds, length of new pipeline, and length and voltage of new transmission line from previous assessments.
Results: Canals/Conduits

- Six sites (45-Mile, Haystack Reservoir, Columbia South Main, 58-11 Lateral, Columbia South Lateral, and 58-9 lateral) are economically feasible with green incentives.

- Without green incentives, only three (45-Mile, Haystack Reservoir, Columbia South Main) are economically feasible.

- Total potential power capacity at all 17 canal/conduit sites about 14.9 MW, with 67.6 GWh annual energy generation.

- Total potential power capacity at six feasible canal/conduit sites about 7.8 MW, with 36.6 GWh annual energy generation.
Conclusions

- Used ORNL HEEA Tool (Version 1.0) to evaluate power/energy potential and financial feasibility of adding hydropower generation to existing NPDs and irrigation canals/conduits with sufficient hydrologic data.

- Potential generation capacity across 14 NPD and 17 canal sites evaluated about 33 MW.

- With estimated lifecycle benefits/costs, only four NPD sites and six canal/conduit sites appear economically feasible.

- These 10 feasible projects could add about 25 MW of capacity, generate over 103 GWh of renewable energy each year, and avoid GHG emissions of 38,500 tonne of CO₂ equivalent each year.
Conclusions

- ORNL HEEA Tool can be incorporated into Deschutes Basin-Scale Water Management Model.

- In March: more detailed written report on assessment methodology and results for Deschutes Basin.

- After March: more detailed documentation on ORNL HEEA Tool, including availability for use in assessing other sites and basins in United States.
Thank you!